

PD-003-1203006

Seat No.

M. Sc. (Sem. III) (CBCS) Examination June / July - 2018

ET - 4 : Physics

(Analog & Digital Systems)

Faculty Code: 003

Subject Code: 1203006

Time : $2\frac{1}{2}$ Hours]

[Total Marks: 70

Instructions: (1) All questions are compulsory.

(2) Number on right margin indicates marks.

1 Attempt any seven:

14

- (a) Draw schematic symbol for the 8-pin op-amp and label each pin.
- (b) List the open-loop op-amp configurations. What do you mean by open-loop and closedloop op-amp configurations?
- (c) Define feedback. What are the different types of feedback used in Op-Amp?
- (d) Define filter. What are the different types of filters.
- (e) List the ideal op-amp electrical characteristics.
- (f) How many bits would you require if you want a resolution of at least 40 mV and the full scale range is $10\ \mathrm{V}$?
- (g) Prepare truth table for the Boolean function : $F = A + B' \cdot C$.
- (h) Write the BCD codes.
- (i) Which of the following counters can be operated at higher clock frequency? Ripple counter and synchronous counter
- (j) Draw the circuit of 4-bit shift left register. How many clock pulses are required to store a 4-bit binary number serially ?
- 2 Answer the following: (any two)
 - (a) Discuss designing steps of differential amplifier from two identical emitter biased circuits.

	(b) (c)	Define an operational amplifier. Draw block diagram of a typical op-amp and discuss function of each block. Define following parameters: (i) CMRR (ii) Slew rate (iii) Power consumption (iv) Output voltage swing.	7
3	(a)	Derive necessary formulae for closed-loop voltage gain, input and output resistances with feedback in the case of voltage series feedback amplifier.	7
	(b)	Draw and briefly discuss frequency responsive curves of active filters. OR	7
3	(a)	A binary full adder circuit has three inputs : X_n, Y_n	7
	`,	and previous carry C_{n-1} and two outputs SUM and CARRY. The canonical Boolean expressions for outputs are :	
		$S_n(C_{n-1}, X_n, Y_n) = \sum (1, 2, 4, 7)$	
		$C_n\left(C_{n-1}, X_n, Y_n\right) = \sum (3, 5, 6, 7)$	
		Design binary full adder circuit using all 2-input NAND gates.	
	(b)	Write a note on designing of BCD to Exces-3 code converter.	7
4	Atte	empt any two :	
		Draw the circuit of asynchronous Mode-8 counter and explain its operation with counting sequence and timing diagram.	7
	(b)	Explain the logic and operation of 8-bit successive	7
		Approximation ADC with neat diagrams.	
	(c)	Write brief note on Ring counters.	7
5	Attempt any two:		14
	(a)	Voltage follower	
	(b)	Zero-crossing detector	
	(c)	4-Bit magnitude comparator	
	(d)	Tracking ADC.	