

PD-003-1173005 Seat No. _____

M. Sc. (Sem. III) (CBCS) Examination

June / July - 2018 MS - 305 : Statistics (Applied Econometrics)

Faculty Code: 003

	Subject Code: 1173005				
Tim	e : 2	$\frac{1}{2}$ Hours] [Total Marks:	70		
Inst	ructi	ions: (1) Attempt all questions.			
		(2) Each question carries equal marks.			
1	Ansv	wer the following: (any seven)	14		
	(1)	Define Econometrics.			
	(2)	Define pooled data.			
	(3)	If the assumption of CLRM, the disturbances are uncorrelated is violated then problem of arises.			
	(4)	In classical linear regression model, the disturbance $u_i \sim$			
	(5)	The relation between F and R ² is			
	(6)	In Ordinal Least Square estimation $Var - Cov(\hat{\beta})$ is			
	(7)	State the relation between tolerance and VIF.			
	(8)	If d is very close to, the greater the evidence of negative autocorrelation.			
	(9)	Define Multicollinearity.			
	(10)	In testing the overall significance of regression coefficients, if the value of \mathbb{R}^2 is then value of F-statistic is ipso facto.			

2	Answer the following: (any two)		
	(1)	Discuss prediction using multiple regressions.	
	(2)	Show that ridge estimator is bias estimator of β .	
	(3)	Discuss the classical linear Regression Model.	
3	Answer the following :		14
	(1)	Explain Generalized least square method in CLRM.	
	(2)	Discuss the Runs test in detection of autocorrelation.	
		\mathbf{OR}	
3	Answer the following:		
	(1)	Explain heteroscedasticity in classical linear regression model.	
	(2)	Explain ordinary least square estimation in classical linear regression model.	
4	Answer the following: (any two)		14
	(1)	Show that $\hat{\beta}^{gls}$ is unbiased estimator of β . Find its variance.	
	(2)	Explain Goldfeld-Quandt test in detection of heteroscedasticity.	
	(3)	Explain OLS estimation in presence of heteroscedasticity.	
5	Answer the following: (any two)		
	(1)	Discuss sources of multicollinearity.	
	(2)	Explain the Durbin-Watson d-test in autocorrelation.	
	(3)	Explain the terms Tolerance and Variance inflection factor in multicollinearity.	
	(4)	Discuss types of multicollinearity and give its diagrammatical view.	