

## PD-003-1163005

Seat No.

## M. Sc. (Sem. III) (CBCS) Examination

June / July - 2018

EMT - 3011: Mathematics

(Differential Geometry)

Faculty Code: 003

Subject Code: 1163005

Time :  $2\frac{1}{2}$  Hours]

[Total Marks: 70

**Instructions**: (1) There are 5 questions.

- (2) Attempt all the questions.
- (3) Figures to the right indicate full marks.
- 1 Attempt any seven:

14

- (1) Define: Functions of class k.
- (2) Define: Right circular helix.
- (3) Define: Reparametrization of a curve.
- (4) What is regular curve segment?
- (5) Define: Length of a regular curve segment.
- (6) Define with example : An open subset of  $R^2$ .
- (7) Define: Simple surface.
- (8) Define: The tangent plane and the normal plane.
- (9) Define: Normal curvature and Geodesic curvature.
- (10) Define: Unit speed curve.
- **2** Attempt the following questions:

14

(a) Show that the curve  $\alpha(t) = (\sin 3t \cos t, \sin 3t \sin t, 0)$  is regular. Also find the equation of tangent line to  $\alpha$  at  $t = \frac{\pi}{3}$ .

OR

(a) Is the curve  $\alpha(t) = (\cos t, \cos^2 t, \sin t)$  regular? If so then find the equation of tangent line at  $t = \frac{\pi}{3}$ .

- (b) If  $g:[c,d] \to [a,b]$  is a reparametrization of a curve segment  $\alpha:[a,b] \to R^3$  then prove that the length of  $\alpha$  is equal to the length of  $\beta = \alpha \circ g$ .
- **3** Attempt the following questions:

14

- (a) Define the arc length of a curve and prove that the arc length is one one function mapping (a, b) onto (c, d) and it is a reparametrization.
- (b) Find the arc length of the curve  $\alpha(t) = (r \cos t, r \sin t, 0)$  and reparametrize the curve by its arc length.

OR

- (b) Show that the length of the curve  $\alpha(t) = \left(2a\left(\sin^{-1}t + t\sqrt{1-t^2}\right), 2at^2, 4at\right) \text{ between the points } t = t_1 \text{ to } t = t_2 \text{ is } 4a\sqrt{2}\left(t_2 t_1\right).$
- 4 Attempt the following questions:

14

(a) Show that the curve

$$\alpha(S) = \left(\frac{5}{13}\cos S, \frac{8}{13} - \sin S, -\frac{12}{13}\cos S\right)$$
 is a unit speed curve. Also compute its frenet - Serret appartus.

- (b) State and prove Frenet Serret theorem.
- 5 Attempt any two questions:

**14** 

- (a) Let  $f: X \to R^3$  be a simple surface and  $f: v \to u$  is a co-ordinate transformation then prove that  $y = X_0$ ,  $f: V \to R^3$  is also a simple surface.
- (b) Let  $x: u \to R^3$  be a simple surface then prove that

(i) 
$$x_{ij} = L_{ij}n + \sum_{k} \Gamma_{ij}^{k} x_{k}$$

(ii) For any unit speed curve

$$\gamma(S) = x(\gamma'(S), \gamma^2(S)), k_n = \sum_{i, j} L_{ij}(\gamma^i)'(\gamma^i)'$$
 and

$$k_g S = \sum_{k} \left[ \left( \gamma^k \right)^n + \sum_{i, j} \Gamma_{ij}^{\ k} \left( \gamma^i \right)^i \left( \gamma^j \right)^i \right] x_k$$

(c) Define Monge patch and compute coefficients of second fundamental form and Christoffel symbols for the same.