

PC-003-1163004

Seat No.

M. Sc. (Sem. III) (CBCS) Examination June / July - 2018

MATHS - CMT - 3004 : Discrete Mathematics (New Course)

Faculty Code: 003 Subject Code: 1163004

Time : $2\frac{1}{2}$ Hours] [Total Marks : 70

Instructions: (1) Answer all the questions.

(2) Each question carries 14 marks.

1 Answer any seven:

 $7\times2=14$

- (a) Define a homomorphism of semigroups. Let $f:(S,*) \to (T,*')$ be a surjective homomorphism of semigroups. If (S,*) is commutative, then verify that (T,*') is commutative.
- (b) When is a lattice (L, \leq) said to be *distributive*? Mention an example of a distributive lattice.
- (c) Define the concept of $regular \ expressions$ over a set A.
- (d) Give the details an example of an equivalence relation R on \mathbb{Z} such that R is not a congruence relation on $(\mathbb{Z}, +)$.
- (e) Let R_1 , R_2 be relations defined on a nonempty set A. If $R_i = R_i^{-1}$ for each $i \in \{1, 2\}$, then show that $R_1 \cup R_2$ is symmetric.
- (f) Let G be a phrase structure grammar. When is G said to be of type 3?
- (g) Define: (i) a finite state machine and (ii) a Moore machine.
- (h) Define an atom of a bounded lattice. Find all the atoms of D_{2468} .
- (i) State the fundamental theorem of homomorphism of semigroups.
- (j) Define: (i) a conditional statement and (ii) a tautology.

2 Answer any two:

 $2 \times 7 = 14$

- (a) Let V be a nonzero vector space over a field F. Prove that the lattice of subspaces of V is distributive if and only if $\dim_F V = 1$.
- (b) Let R be a relation defined on a nonempty set A. Show that R^{∞} is the transitive closure of R.
- (c) Let R be a congruence relation defined on a semigroup (S,*). Describe in detail the construction of the quotient semigroup of S determined by R. Let A be a nonempty set. Show that $(\mathbb{N} \cup \{0\}, +)$ is isomorphic to a quotient semigroup of A^* .
- 3 (a) Let $n \ge 1$. Let $f_1, f_2 : B_n \to B$. Show that

5

- (i) $S(f_1 \vee f_2) = S(f_1) \cup S(f_2)$
- (ii) $S(f_1 \wedge f_2) = S(f_1) \cap S(f_2)$
- (iii) $S((f_1)') = B_n \setminus S(f_1)$
- (b) Let (L, \leq) be a Boolean Algebra. Let $a, b \in L$. Show that (i) $(a \lor b)' = a' \land b'$ and (ii) $(a \land b)' = a' \lor b'$.
- (c) Prove that there exists no semigroup homomorphism 4 from (\mathbb{N}, \times) onto $(5\mathbb{N}, \times)$.

OR

- 3 (a) Let (L, \leq) be a finite Boolean Algebra. Let $a \in L, a \neq 0$. 5 Let $\{c_1, \ldots, c_k\}$ be the set of all atoms c and L such that $c \leq a$. Prove that $a = V_{i=1}^k C_i$.
 - (b) Let $f: B_4 \to B$ be such that $S(f) = \{0000, 0001, 0011, 0010, 1000, 1001, 1111\}$. Construct the Karnaugh map of f and find a Boolean expression for the function f.
 - (c) Let R be a congruence relation defined on a group G. 4 Show that $N = \{g \in G | g \text{ Re} \}$ is a normal subgroup of G.

5

4 Answer any two:

 $2 \times 7 = 14$

- (a) Let (L, \leq) be a lattice. If (L, \leq) is not modular, then prove that (L, \leq) will contain a sublattice M which is isomorphic to the pentagon lattice.
- (b) Let $M = (S, I, F, s_0, T)$ be a Moore machine in which $S = \{s_0, s_1\}, I = \{0, 1\}, F = \{f_0, f_1\}$ where $f_0 = \text{Identity}$ map on $S, f_1 : S \to S$ is given by $f_1(s_0) = s_1$ and $f_1(s_1) = s_0$, $T = \{s_1\}$. Find L(M). Construct a type 3 grammar G such that L(M) = L(G). Also determine a regular expression α over I such that L(M) is the regular set that corresponds to α .
- (c) Let $G = (V, S, v_0, \mapsto)$ be a phrase structure grammar in which $V = \{v_0, v_1, a, b\}$, $S = \{a, b\}$, and the production relation \mapsto is given by $1.v_0 \mapsto av_1, 2.v_1 \mapsto bv_0$ and $3. v_1 \mapsto a$. Find L(G) and construct a regular expression α over S such that L(G) is the regular set that corresponds to α .

5 Answer any two:

 $2 \times 7 = 14$

[50]

- (a) Let P be a propositional function. Prove
 - (i) $\sim (\forall x P(x)) \equiv \exists x \sim P(x)$ and
 - (ii) $\sim (\exists x P(x)) \equiv \forall x (\sim P(x))$
- (b) State and prove the Pumping lemma.
- (c) Let R be a relation defined on a nonempty finite set A. Describe Warshall's Algorithm for computing the transitive closure of R.
- (d) Let $f: L_1 \to L_2$ be a bijection, where $(L_i, \leq i)$ is a lattice for each $i \in \{1, 2\}$. Show that the following statements are equivalent.
 - (i) $f(a_1 \vee a_2) = f(a_1) \vee f(a_2)$ for all $a_1, a_2 \in L_1$.

3

(ii) For any $a_1, a_2 \in L_1$, $a_1 \le_1 a_2$ if and only if $f(a_1) \le_2 f(a_2)$.