

PG-003-001617

Seat No. _____

B. Sc. (Sem. VI) (CBCS) Examination

July - 2018

BSMT - 602 (A): Mathematics

(Mathematical Analysis - 2 & Group Theory - 2)

Faculty Code: 003

Subject Code: 001617

Time : $2\frac{1}{2}$ Hours]

[Total Marks : 70

Instructions: (1) All questions are compulsory.

- (2) Write answer of each question in your main answer sheet.
- 1 Answer the following questions in briefly:

20

- (1) Define Field
- (2) State the first fundamental theorem of homomorphism
- (3) Define constant polynomial
- (4) Define Homomorphism
- (5) Find zero divisor of the ring $(z_6, +_6, \circ_6)$
- (6) Define Kernel of homomorphism
- (7) If polynomial g = (0, 2, -3, 0, 0, 0,) then find degree of g.
- (8) Give an example of a ring without unity
- (9) Define Ring with Unity
- (10) Find characteristic of the ring $(z_6, +_6, \circ_6)$
- (11) Define: compact set
- (12) Define countable set
- (13) Find $L(Sinh\ 2t)$
- (14) Check whether the subset $\{2\}$ of metric space R is compact or not

- (15) Find $L(e^t t)$
- (16) Find $L^{-1}\left(\frac{1}{s-2}\right)$
- (17) Show that R is not compact set
- (18) Define Connected sets
- (19) Determine whether set $\{1,3,5,7,9,11\}$ is connected
- (20) Find $L(t^{-1/2})$
- 2 (A) Attempt any three:

- 6
- (1) Prove that every finite subset of any metric space is compact
- (2) Find Laplace transform of $\sin^3 2t$
- (3) If A and B are compact subsets of metric space R then show that $A \cap B$ is also compact
- (4) Show that subset $R \{2\}$ is not connected
- (5) State and prove first shifting property of Laplace Transform
- (6) Find Laplace inverse transform of $\frac{s}{(s+a)^2}$
- (B) Attempt any three:

- 9
- (1) Show that every singleton subset of any metric space is connected
- (2) State and prove Heine-Borel theorem
- (3) If F is a closed subset of metric space X and K is a compact subset of X Then prove that $F \cap K$ is also compact
- (4) If $L\{f(t)\}=F(s)$ then prove that

$$L\left\{t^n f(t)\right\} = -\frac{d^n}{ds^n}\overline{f}(s)$$

- (5) Find Laplace transform of $\frac{1-e^{-t}}{t}$
- (6) Find inverse Laplace transform of $\cot^{-1}\left(\frac{s}{a}\right)$

(C) Attempt any two:

- 10
- (1) State and prove theorem of nested intervals
- (2) Let (X,d) be a metric space and E_1, E_2 are connected sets of X. If $E_1 \cap E_2 \neq \emptyset$ then prove that $E_1 \cap E_2$ is also connected
- (3) Prove that every compact set of a metric space is closed
- (4) Find inverse Laplace transform of $\log \frac{s+b}{s+a}$
- (5) Find inverse Laplace transform of $\frac{1}{\left(s^2 + a^2\right)^2}$ by convolution theorem
- 3 (A) Attempt any three:

6

- (1) Let $\phi: (G, *) \to (G', \Delta)$ is Homomorphism. If $H' \leq G'$ then prove $\phi^{-1}(H) \leq G$
- (2) If $\phi:(G,*)\to(G',\Delta)$ is Homomorphism. Then $\phi(e)=e'$ where e & e' are identity elements of G & G' respectively.
- (3) If $\phi: (G, *) \to (G, *)$, $\phi(x) = x$; $\forall x \in G$ is homomorp-hism then find K_{ϕ}
- (4) For element a and b of a ring R, prove that a 0 = 0
- (5) f(x) = (2,3,4,2,0,0...) and $g(x) = (4,2,0,0,3,0...) \in R[x]$ then find f(x) + g(x).
- (6) Let I be an ideal of a ring R with unity. Then prove that I = R if $1 \in I$
- (B) Attempt any three:

9

- (1) Prove that a commutative ring with unity is a field if it has no proper ideal
- (2) Prove that A Homomorphism $\phi:(G,*)\to(G',\Delta)$ is one-one iff $k_{\phi}=\{e\}$
- (3) Find all homomorphism's of (Z,+) onto (Z,+).

- (4) State and prove factor theorem of polynomials
- (5) Give an example of a subring which is right ideal but not left ideal.
- (6) Prove that any field is an integral domain

(C) Attempt any two:

10

- (1) State and prove Remainder theorem
- (2) State and prove fundamental theorem of homomorphism
- (3) If $f(x) = 4x^4 3x^2 + 2$ is divided by $g(x) = x^3 2x + 1$ then find quotient q(x) and remainder r(x)
- (4) If R is a ring and R_1 and R_2 are sub rings of R then show that $R_1 \cap R_2$ is also a sub ring of R.
- (5) State and prove division algorithm for polynomials.