

MBI-003-003208

Seat No. _____

B. C. A. (Sem. II) (CBCS) Examination

March / April - 2018

Mathematical & Statistical Foundation of Computer Science

		(Old Course)								
Faculty Code: 003 Subject Code: 003208										
Tim	e : 2	$\frac{1}{2}$ Hours] [Total Marks:	70							
Inst	ruct	ions: (1) Figures to the right indicate marks.(2) Write answers of all questions in main answ sheet.	ver							
1		$\{1, 2, 3\} \cap \{2, 3, 4\} = \underline{\qquad}$ $A \cap B = \underline{\qquad}$	20							
	(3)	How many are subsets of a set $\{1, 2, 3, 4\}$?								
	(4)	$A \cap A' = \underline{\hspace{1cm}}$								
	(5)	The mean of the observations 4, 6, 10, 12, 18 is								
	(6)	Median can be denoted as								
	(7)	Range =								
	(8)	Mode can be denoted as								
	(9)	For two parallel lines which of the following condition is true.								
	(10)	The slope of a line perpendicular to the whose equation is $2y + 6x = 24$ is								
	(11)	The slope of the line passing through the points $(2, 2)$ and $(4, 6)$ is								
	(12)	If the distance between $(b, -5)$ and $(-2, b)$ is 13. Find the value of b .								
	(13)	Null matrix is denoted by								
	(14)	Formula of A^{-1} .								

$$(15) (AB)^{-1} = \underline{\hspace{1cm}}$$

$$(16) AA^{-1} =$$

- (17) Write the formula of T_n in A.P.
- (18) 2, 8, 32, 128, are in _____
- (19) Write the formula of T_n in G.P.
- (20) In G.P. ratio is denoted as _____.

2 (a) Any **three** :

6

- (1) Explain: Empty set.
- (2) Explain: Mean.
- (3) Find the distance between two points (7, 8) and (1, 0).
- (4) Write properties of intersection of sets.
- (5) Find Mean:

İ	<i>x</i> :	64	63	62	61	60	59
I	<i>F</i> :	8	18	12	9	7	6

(6) Explain: Slope.

(b) Any three:

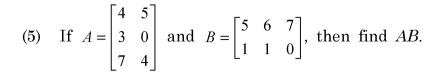
9

- (1) Verify that $(A \cup B)' = A' \cap B'$.
- (2) If $A = \{1, -1, 0\}$, $B = \{0, 1\}$ then find $A \times B$.
- (3) Find the equation of the st. line parallel to 2x-3y-5=0 and passing through (4, 5).
- (4) Find K if points (-3, 8), (K, 5) and (-5, 2) will be collinear.
- (5) Explain: Merits of median.
- (6) Find Q_1 :

x:	2	3	4	5	6	7	8	9	10	11
f:	3	6	9	18	20	24	10	10	7	2

- (1) Prove that $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$
- (2) Obtain equation of line passing through a point (x_1, y_1) having slope m.
- (3) If $A = \{1, 2\}$, $B = \{a, b\}$, $C = \{b, c\}$, find $A \times (B \cap C)$ and $A \times (B \cup C)$.
- (4) Explain: Standard Deviation.
- (5) Find median:

<i>x</i> :	0 - 20	20 - 40	40 – 60	60 - 80	80 – 100	100 – 120
<i>f</i> :	10	20	30	50	40	30


3 (a) Any three:

6

- (1) Explain: Adjoint matrix.
- (2) Explain: Defⁿ. of Arithmetic progression.
- (3) $T_{12} = 20, T_{32} = 60$ for an A.P., find d.
- (4) $A = \begin{bmatrix} 1 & -1 \\ 2 & 4 \end{bmatrix}$, $B = \begin{bmatrix} 4 & 5 \\ 3 & 4 \end{bmatrix}$ find 2A 3B.
- (5) 2, 6, 18, 54, find T_9 .
- (6) Find Adj A. $A = \begin{bmatrix} 7 & 8 \\ 2 & 10 \end{bmatrix}$.
- (b) Any three:

9

- (1) Prove that $S_n = \frac{a(1-r^n)}{1-r}$
- (2) $T_4 = 22, T_{10} = 52$ are in A.P. Find S_{40} .
- (3) Find the sum of n terms $2 + 22 + 222 + 2222 + \dots$
- (4) If $A = \begin{bmatrix} 5 & 1 \\ 4 & 2 \end{bmatrix}$, then find A^{-1} .

(6) If
$$A = \begin{bmatrix} 0 & 4 & 3 \\ 1 & -3 & -3 \\ -1 & 4 & 4 \end{bmatrix}$$
, prove that $A^2 = I$

(c) Any two:

10

- (1) Prove that $S_n = \frac{n}{2} (2a + (n-1)d)$.
- (2) the sum of three numbers in G.P. is 35 and their product is 1,000. Find the numbers.
- (3) If $A = \begin{bmatrix} 1 & 0 & 7 \\ 2 & 2 & 5 \\ 0 & 3 & 6 \end{bmatrix}$, then find A(adj A).
- (4) If $A = \begin{bmatrix} 1 & 2 & 2 \\ 2 & 1 & 2 \\ 2 & 2 & 1 \end{bmatrix}$, find the value of $A^2 A + I$.
- (5) If $A = \begin{bmatrix} 4 & 1 \\ 2 & 2 \end{bmatrix}$. Find matrix B such that $A + 2B = A^2$.