

MBI-003-003204

Seat No.

B. C. A. (Sem. II) (CBCS) Examination

March/April - 2018

Mathematical & Statistical Foundation of Computer Science

(Old Course)

Faculty Code: 003

Subject Code: 003204

Time : $2\frac{1}{2}$ Hours] [Total Marks : 70

1 Answer the following :

20

- (1) $\{0,1,2\} \cap \{4,5,6\} =$ _____.
- (2) $A \cap A' =$ _____.
- (3) If $A = \{5, 9\}, B = \{3, 5\}, A \cup B = \underline{\hspace{1cm}}$
- (4) $A \cap U =$
- (5) Two line are perpendicular then relation between slope are _____.
- (6) Write an equation of line, whose slope is 2 and point is (0, 1).
- (7) Two lines are parallel, slope of one line is -1, then slope of other line is _____.
- (8) $d = \sqrt{(x_1 x_2)^2 + (y_1 y_2)^2}$ is true or false.
- (9) Two numbers are 2 and 8, then $GM = \underline{\hspace{1cm}}$.
- (10) Write T_n formula for GP.
- (11) The common difference of a sequance 5, 7, 9, 11.... is
- (12) AM = 5, HM = 3, then $G^2 =$ _____.

- (13) Correlation coefficient for two variable lies in between _____ to _____.
- $(14) \quad \sqrt{b_{xy} \times b_{yx}} = \underline{\qquad}.$
- (15) Y = 10 + 0.4(X 2010), If X = 2018 then $Y = ____.$
- (16) $Y = ax^2 + bx + c$ is a second degree equation (True/False).
- (17) _____ chart is more sensitive.
- (18) $\overline{\overline{X}} = 12.5$, $A_2 \overline{R} = 5.3$, then $UCL_{(X)} = \underline{\hspace{1cm}}$.
- (19) In C-chart _____ distribution is used.
- (20) SQC is known as _____.
- 2 (a) Attempt any three:

6

- (1) Define Union of two sets.
- (2) Write De-Morgan's Law.
- (3) Write distance formula for two points.
- (4) Write equation of line passing through two points.
- (5) $X = \{0, 1, 2\}$ write power set of X.
- (6) Find Area of triangle whose vertices are (2, 1) (-3, 1) and (0, -3)
- (b) Attempt any three:

9

- (1) Write properties of Intersection.
- (2) A = $\{0, 1, 2\}$, B = $\{-1, 0, 1\}$, C = $\{0, 1\}$ find $(A \cap B) \times C$.
- (3) Find equation of line passing through (3, 2) and is parallel to 5x + y 2 = 0.
- (4) For what value of K, the Area of (-3, 8) (K, 5) and (-5, 2) is 0.

(5) Find technology matrix from Input-output table:

Input/output	X	Y
X	45	80
Y	50	60
	150	200

Final demand Total production
100 150
120 200

(6) Explain Moving Average method.(c) Attempt any two:

10

- (1) For any three sets prove that $A \cap (B \cup B) = (A \cap B) \cup (A \cap C)$
- (2) Obtain equation of line having intercepts a and b on both axes.
- (3) Fit a straight line to the following data:

Year:	1996	1997	1998	1999	2000
Value:	40	50	62	58	60

(4) Find 3-yearly moving averages from time series:

Year:	1	2	3	4	5	6	7	8	9	10	11
Value:	2	5	10	6	14	19	21	24	30	35	20

- (5) Show that the points (4,-5), (8,1), (14,-3) and (10,-9) are the vertices of a square.
- **3** (a) Attempt any three:

6

- (1) Define A.P.
- (2) Define GP.
- (3) Define AM., GM, and HM for two numbers.
- (4) Define Regression.
- (5) Find 19th term of $\frac{1}{3}, \frac{1}{5}, \frac{1}{7}, \dots$
- (6) In AP, $S_n = 6n^2 + 2n$ find T_5 .

- (b) Attempt any three:
 - (1) Define Correlation.
 - (2) Define SQC.
 - (3) Write control limits for \overline{X} chart.

(4)
$$\sum (x - \overline{x})^2 = 210, \sum (y - \overline{y})^2 = 110, \sum (x - \overline{x})(y - \overline{y}) = -48$$
 find r .

- (5) For AP, $T_{21} = 41$ and $T_{11} = 21$, find first term and common difference.
- (6) Find 20th term of 2, 4, 8, 16......
- (c) Attempt any two:

10

9

- (1) The sum of three numbers is 26 and their product is 216. Find the numbers in GP.
- (2) Draw P-chart and state your comment.

Sample no:	1	2	3	4	5	6	7	8	9	10	11	12
No. of Defective:	22	16	18	14	38	3	20	36	26	8	0	19

$$[n = 200]$$

(3) Following are the numbers of Defects noted in 15 pairs of clothes:

(4) Find Regression line y on x:

1	<i>x</i> :	10	11	12	5	6	8	2	3
1	<i>y</i> :	12	13	15	7	9	10	4	6

(5) Find correlation coefficient from the following results:

$$\overline{x} = 5$$
, $\overline{y} = 4$, $\sum x = 125$, $\sum y = 100$, $\sum xy = 520$, $S_x^2 = 1$, $S_y^2 = 1.44$.