

NBI-003-003208

Seat No.

B. C. A. (Sem. II) (CBCS) Examination

April/May - 2017

Mathematical & Statistical Foundation of Computer Science

(Old Course)

Faculty Code: 003

Subject Code: 003208

Time : $2\frac{1}{2}$ Hours] [Total Marks : 70

- 1 Attempt the following. Each of one mark: 20
 - (1) Null set is denoted by \$\phi\$ (true/false)
 - (2) $A \cap B = B \cap A$ (true/false)
 - (3) $(A \cup B)' = A' \cap B'$ (true/false)
 - (4) $A-B=A\cap B'$ (true/false)
 - (5) The slope of (2, 2) and (5, 5) is _____.
 - (6) In a square all sides are _____.
 - (7) When points are co-linear, Area is 0 (true/false).
 - (8) The distance formula for two points is

$$d = (x_1 - x_2)^2 + (y - y_2)^2$$
 (true/false)

- (9) The common ratio of a GP 4, 12, 36 is _____.
- (10) In AP if a = 4, d = 5, then T_5 is ______.
- (11) Sixth term of a sequence 2, 4, 8,.....is _____.

1

(12) In AP, $S_n = 2n + 1$, find T_{10} .

- (13) Matrix is always square. (true/false)
- (14) A matrix is symmetric then $A^{-1} = A^{T}$ (true/false)
- (15) Order of A is 3×4 then order of A^T is 3×4 (true/false)
- (16) $AA^{-1} \neq I$ (true/false)
- (17) The average of 5, 8, 9, 4 is _____.
- (18) Quartiles means a set is decided into 4 parts. (true/false).
- (19) The value which occur more time in series is called mode.

 (true/false)
- (20) Mode = 33, Mean = 37 then Median = _____.
- 2 (a) Any three:

6

- (1) Define: Set, Equivalent set.
- (2) Write down power set of {2, 3}
- (3) Define: Mean with example.
- (4) If $A = \{x, y\}, B = \{1, 3\}$ find $A \times B, B \times A$.
- (5) Find Q_2 from the series 17, 8, 5, 3, 14, 6, 10, 21, -2,
- (6) Find a point divides the line joining (3, 6) and (6,11) Externally in ratio 2:1.
- (b) Any three:

9

- (1) Write properties of complimentary set.
- (2) Find area of triangle formed by points (x, y-z), (-x, z) and (x, y+z).
- (3) A = $\{1, 2, 3, 4, 5, 6, 7, 8, 9\}$ B = $\{3, 5, 7\}$, C = $\{2, 4, 6\}$ Verify that $A - (B \cup C) = (A - B) \cap (A - C)$.

- (4) The distance between two points (k, 3) and (2, k) is $\sqrt{5}$ find k.
- (5) Find Mode:

Class:	0-10	10-20	20-30	30-40	40-50	50-60	60-70	70-80	80-90	90-100
Frequency:	3	5	7	10	12	15	12	6	2	8

(6) Find Missing value when M = 24:

Class:	0-10	10-20	20-30	30-40	40-50
Frequency:	5	25	?	18	7

(c) Any two:

10

- (1) Write Distributive Law of Intersection over Union and Prove it.
- (2) Find Standard Deviation:

I						10		
	<i>f</i> :	3	6	9	13	8	5	4

- (3) Find equation of line passing through (4, 2) and parallel to 3x-2y-5=0.
- (4) Show that points (-3, 2), (1, 2), (-3, 5) form a right angle triangle.
- (5) Find Median:

<i>x</i> :	18	19	20	21	22	23	24
f:	169	190	200	240	130	100	52

3 (a) Any three:

6

- (1) Define Square matrix.
- (2) Define AP with example.
- (3) Define parallel, perpendicular line.

(4) If
$$A = \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix}$$
 find A^2 .

- (5) -12, -8, -4..... Find 11th term of an AP.
- (6) Which term will be 124 in 4, 9, 14, 19.......
- (b) Any three:

9

- (1) Obtain the sum of first n terms of natural numbers.
- (2) 5^{th} term of a GP is 32 and 10^{th} term is 1024. Find 8^{th} term.
- (3) If $A = \begin{bmatrix} 4 & 1 \\ 2 & 3 \end{bmatrix}$ find B, such that $A + 2B = A^2$.

(4) If
$$A = \begin{bmatrix} 1 & 1 & -1 \\ 2 & -3 & 4 \\ 3 & -2 & 3 \end{bmatrix}$$
 $B = \begin{bmatrix} -1 & -2 & -1 \\ 6 & 12 & 6 \\ 5 & 10 & 5 \end{bmatrix}$ find AB.

- (5) Find equation of line joining points (3,5) and (6,4).
- (6) In a GP, $T_3 = 18$, $T_6 = -486$ find S_6 .
- (c) Any two:

10

- (1) Three numbers are in A.P. their sum is 10 and if 1 is added to first number and 4 is added to third number we get a G.P., find numbers.
- (2) Five numbers are in A.P. their sum is 35 and product of their first and fifth number is 33, find the numbers.
- (3) In AP, $S_6 = 57$ and $S_{10} = 155$ find T_{20} .

(4) If
$$A = \begin{bmatrix} 1 & -8 & 10 \\ 0 & 2 & -3 \\ 0 & -1 & 2 \end{bmatrix}$$
 find A^{-1} .

(5) If $A = \begin{bmatrix} -1 & -2 & -2 \\ 2 & 1 & -2 \\ 2 & -2 & 1 \end{bmatrix}$ prove that adj $A = 3A^T$.